
ROTATION TRANSFORMATION NETWORK: LEARNING VIEW-INVARIANT POINT
CLOUD FOR CLASSIFICATION AND SEGMENTATION

Shuang Deng∗†‡, Bo Liu∗†‡, Qiulei Dong∗†‡, and Zhanyi Hu∗†

∗National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, China

†School of Artificial Intelligence, University of Chinese Academy of Sciences, China
‡Center for Excellence in Brain Science and Intelligence Technology,

Chinese Academy of Sciences, China
{shuang.deng, qldong, huzy}@nlpr.ia.ac.cn, liubo2017@ia.ac.cn

ABSTRACT

Many recent works show that a spatial manipulation mod-

ule could boost the performances of deep neural networks

(DNNs) for 3D point cloud analysis. In this paper, we aim to

provide an insight into spatial manipulation modules. Firstly,

we find that the smaller the rotational degree of freedom

(RDF) of objects is, the more easily these objects are handled

by these DNNs. Then, we investigate the effect of the popu-

lar T-Net module and find that it could not reduce the RDF of

objects. Motivated by the above two issues, we propose a ro-

tation transformation network for point cloud analysis, called

RTN, which could reduce the RDF of input 3D objects to

0. The RTN could be seamlessly inserted into many existing

DNNs for point cloud analysis. Extensive experimental re-

sults on 3D point cloud classification and segmentation tasks

demonstrate that the proposed RTN could improve the perfor-

mances of several state-of-the-art methods significantly.

Index Terms— point cloud, rotation invariance, 3D ob-

ject classification, 3D object segmentation

1. INTRODUCTION

With the rapid development of 3D sensors, 3D point cloud

analysis techniques have drawn increasing attention in recent

years. Inspired by the great success of Deep Neural Net-

works (DNNs) in the image analysis filed, a large number of

works [1, 2, 3, 4, 5, 6] have utilized DNNs to handle various

tasks in the field of 3D point cloud analysis.

It is generally believed that one of the main factors which

impede the development of many existing DNNs for point

cloud classification and segmentation is: the input sets of

This work was supported by the National Natural Science Foundation

of China (U1805264, 61991423), the Strategic Priority Research Program

of the Chinese Academy of Sciences (XDB32050100), and the Open Re-

search Fund from Key Laboratory of Intelligent Infrared Perception, Chinese

Academy of Sciences. Corresponding author: Qiulei Dong.

point clouds belonging to a same object category are gener-

ally view-dependent, and they undergo different rigid trans-

formations (translations and rotations) relative to a unified

view. Compared with translation transformations whose in-

fluences could be easily eliminated through coordinate cen-

tralization, rotation transformations are more difficult to be

handled. Additionally, it still lacks experimental analysis of

the influence of object poses on the performances of these

DNNs in literature. It is noted that some recent works [1, 4]

showed that a learnable module that allows spatial manipu-

lation of data could significantly boost the performances of

DNNs on various point cloud processing tasks, such as point

cloud classification and segmentation. For example, the popu-

lar T-Net [1, 4] is a learnable module that predicts an transfor-

mation matrix with an orthogonal constraint for transforming

all the input point clouds to a 3-dimensional latent canoni-

cal space and has significantly improved the performance of

many existing DNNs. Despite its excellent performance, the

poses of different point clouds transformed via T-Net are still

up to some 3-degree-of-freedom rotations as analyzed in Sec-

tion Methodology.

Motivated by the aforementioned issues, we firstly com-

pare and analyze the influence of RDF of input 3D objects

on several popular DNNs empirically in this paper, observing

that the smaller the RDF of objects is, the better these DNNs

consistently perform. This observation encourages us to fur-

ther investigate how to reduce the RDF of objects via a learn-

able DNN module. Then, we evaluate the performances of the

T-Net used in [1] and [4], and find that although it could ma-

nipulate 3D objects spatially and improve the DNNs’ perfor-

mances to some extent, it could not transform the input view-

dependent data into view-invariant data with 0 RDF in most

cases. Finally, we propose a rotation transformation network,

called RTN, which utilizes a Euler-angle-based rotation dis-

cretization manner to learn the pose of input 3D objects and

then transforms them to a unified view. The proposed RTN

has a two-stream architecture, where one stream is for global

978-1-6654-3864-3/21/$31.00 c©2021 IEEE

feature extraction while the other one is for local feature ex-

traction, and we also design a self-supervised scheme to train

the RTN.

In sum, our major contributions are three-fold:

• We empirically verify that the smaller the RDF of ob-

jects is, the more easily these objects are handled by

some state-of-the-art DNNs, and we find that the popu-

lar T-Net could not reduce the RDF of objects in most

cases.

• To our best knowledge, the proposed RTN is the first

attempt to learn the poses of 3D objects for point cloud

analysis under a self-supervised manner. It could effec-

tively transform view-dependent data to view-invariant

data, and could be easily inserted into many existing

DNNs to boost their performance on point cloud anal-

ysis.

• Extensive experimental results on point cloud classifi-

cation and segmentation demonstrate that the proposed

RTN could help several state-of-the-art methods im-

prove their performances significantly.

2. RELATED WORK

2.1. Deep Learning for 3D Point Clouds

PointNet [1] is the pioneering method to directly process 3D

point clouds using shared multi-layer perceptrons (MLPs)

and max-pooling layers. PointNet++ [2] extends PointNet

by extracting multiple-scale features of local pattern. Spatial

graph convolution based methods have also been applied to

3D point clouds. SpiderCNN [3] treats the convolutional ker-

nel weights as a product of a simple step function and a Taylor

polynomial. EdgeConv is proposed in DGCNN [4] where a

channel-wise symmetric aggregation operation is applied to

the edge features in both Euclidean and semantic spaces.

2.2. Rotation-Invariant Representation for 3D Point
Clouds

Rotation invariance is one of the most desired properties

for object recognition. Addressing this issue, many existing

works investigate how to learn rotation-invariant representa-

tions from the 3D point clouds. In [7, 8, 9, 10, 11], dif-

ferent types of convolutional kernel are designed to directly

extract approximately rotation-invariant features of the input

3D point clouds. In [12, 13, 14], they propose to manually

craft a strictly rotation-invariant representation in the input

space and uses this representation to replace the 3D Euclidean

coordinate as model input which will inevitably result in in-

formation loss. Unlike those above methods, this paper aims

to learn a spatial transformation which transforms the input

view-dependent 3D objects into view-invariant objects with 0

RDF.

Table 1. Classification performances of four methods on 3D

point clouds with different rotational degrees of freedom.

Method SO(0)(Ins/mCls) SO(1)(Ins/mCls) SO(3)(Ins/mCls)

PointNet [1] 89.1/85.9 88.1/85.2 84.4/79.9

PointNet++ [2] 90.6/86.8 89.9/86.2 85.7/80.6

DGCNN [4] 92.4/90.2 91.4/88.8 88.7/84.4

SpiderCNN [3] 91.5/87.8 90.2/87.8 83.9/78.7

Sample1 Sample2 Sample3 Sample4

RTN

T-Net

Fig. 1. Visualization of point clouds before and after two

spatial manipulation module (RTN and T-Net). The first line

presents the results of RTN and the second line presents those

of T-Net. The orange ones represent the point clouds before

spatial manipulation while the blue ones represent those after

spatial manipulation.

3. METHODOLOGY

In this section, we firstly compare and analyze the influences

of the rotational degree of freedom (RDF) of objects on the

performances of four popular DNNs for point cloud analysis.

Secondly, we investigate whether T-Net [15] could reduce the

RDF of objects or not. Finally, we describe the proposed ro-

tation transformation network (RTN) in detail.

3.1. Influences of RDF of Objects on DNNs

We investigate the influences of the RDF of objects on

four state-of-the-art methods including PointNet [1], Point-

Net++ [2], DGCNN [4], and SpiderCNN [3], where no spe-

cial modules are employed for explicitly extracting rotation-

invariant representations from 3D point clouds. These meth-

ods are trained and evaluated on point cloud classification

with the following three sets of data:

• Data SO(0): for the input objects belonging to each

category, they locate a same pose in a centralized 3D

space. The RDF of these objects is 0.

• Data SO(1): for the input objects belonging to each cat-

egory, they locate on a reference plane in a centralized

3D space. The RDF of these objects is 1.

2

Input view-dependent
point cloud

EdgeC
onv

Key Points
Sampling

Shared M
LP

N
*
3

K
*
3

Z-Y
-Z E

uler-A
ngle

Output view-invariant
point cloud

EdgeC
onv

EdgeC
onv

FC

M
ax-Pooling

FC

M
ax-Pooling

FC FC

Shared M
LP

Shared M
LP

EdgeC
onv

EdgeC
onv

EdgeC
onv

FC

M
ax-Pooling

Key Points
Sampling

Shared M
LP

K
*
3

FC

M
ax-Pooling

Shared M
LP

Shared M
LP

Local Branch

Global Branch

hh

512
512

1024

Fig. 2. Architecture of the Proposed RTN.

• Data SO(3): for the input objects belonging to each cat-

egory, they locate with an arbitrary pose in a centralized

3D space. The RDF of these objects is 3.

The instance accuracy (Ins(%)) and average per-class accu-

racy (mCls(%)) for the classification task on the public Mod-

elNet40 dataset by the four methods are reported in Table 1.

We also investigate the influences of the RDF of objects on

ShapenetPart for point cloud segmentation, which refers to

the supplementary material. As seen from Table 1, the classi-

fication performances by the referred methods on Data SO(0)

and Data SO(1) are significantly higher than those on Data

SO(3), and their performances on Data SO(0) are best in most

cases. This demonstrates that the smaller the RDF of objects

is, the more easily these objects are handled, which encour-

ages us to investigate whether the popular T-Net used in some

state-of-the-art methods [1, 4] could reduce the RDF of ob-

jects and how to design a more effective DNN module to do

so in the following two subsections respectively.

3.2. Could T-Net Reduce the RDF of Objects?

The observation in the above subsection naturally raises the

following question: Could the T-Net extensively used in some

state-of-the-art methods [1, 4] reduce the RDF of objects or

not? In theory, T-Net aims to learn a spatial transformation

matrix with only an orthogonal constraint, and the learnt or-

thogonal matrix by T-Net could not strictly guarantee that the

input view-dependent objects could be transformed into a uni-

fied view.

In order to further investigate the above question, we vi-

sualize many samples from each category in ModelNet40 and

the corresponding transformed point clouds by the T-Net used

in [4] 1. Due to the limited space, the second row of Figure

1 shows four samples of the planes where the orange point

clouds with 3 RDF are the inputs to T-Net, while the blue

1Due to the fact that the T-Net were used similarly in [1, 4], we only

visualize the prediction results by the T-Net used in [4].

point clouds are the corresponding transformed ones by T-

Net. As seen in Figure 1, the transformed point clouds by

T-Net still have 3 RDF. This demonstrates that T-Net could

not reduce the RDF of objects.

3.3. Rotation Transformation Network

Inspired by the above observations, we investigate how to de-

sign a network for reducing the RDF of input object point

clouds effectively. Here, we propose a rotation transforma-

tion network (RTN), which could learn the rotations of the

input 3D objects and then use the learnt rotations to obtain

view-invariant objects by performing inverse rotations. The

architecture of the proposed RTN is shown in Figure 2.

In the proposed RTN, the rotation learning problem is

transformed into a classification problem where a Euler-

angle-based rotation discretization is employed. Then a self-

supervised learning scheme is designed to train the proposed

RTN. In the following, we firstly give a detailed explanation

on the Euler-angle-based rotation discretization in our net-

work. Then, we describe the detailed architecture. Lastly,

we present the details of the proposed self-supervised learn-

ing scheme.

3D Rotation Discretization. Here, our goal is to dis-

cretize infinite 3-degree-of-freedom rotations into a finite

group of rotation classes. We use the Z-Y-Z Euler-angle rep-

resentation under a world coordinate system: An arbitrary 3D

rotation is accomplished by firstly rotating the object around

the Z axis by angle α, and secondly rotating it around the Y

axis by angle β, and lastly rotating it around the Z axis by

angle γ, which is also formulated by the following equation:

R(α, β, γ) = RZ(γ) ◦RY (β) ◦RZ(α)

s.t. α ∈ [0, 2π), β ∈ [0, π], γ ∈ [0, 2π)
(1)

where R(α, β, γ) indicates an arbitrary 3D rotation, RZ(α)
(also RZ(γ)) indicates a rotation with α (also γ) around the

Z axis, RY (β) indicates a rotation with β around the Y axis,

and ◦ means matrix multiplication.

3

After defining the Z-Y-Z Euler-angle representation of 3D

rotations, we discretize the continuous range of {α, β, γ} into

a set of discrete values. In detail, we uniformly discretize the

range of α ∈ [0, 2π) into N1 = 2π/θ values with a pre-

fixed interval θ. To avoid singular points, we adopt a sphere

equiangular discretization to jointly discretize β ∈ [0, π] and

γ ∈ [0, 2π) into N2 = (πθ −1)× 2π
θ +2 values with interval θ.

Then, the total number of rotation classes is N = N1 × N2.

Note that the discretized rotation classes will become more

fine-grained (larger N) as the interval θ becomes smaller.

Network Architecture. As shown in Figure 2, the pro-

posed RTN employs a global branch and a local branch,

where the local branch uses local aggregation method to ex-

tract features and the global branch only extracts point-wise

features of the key points. The inputs to the RTN are point

clouds with an arbitrary view, while its outputs are the corre-

sponding view-invariant point clouds.

The global branch firstly samples M key points of the

3D objects, which is described in the supplementary material

specifically. Then, these M key points are used to extract the

point-wise features via three shared MLP layers, and a max-

pooling followed by a fully-connected layer is applied to the

features of these key points.

The local branch takes dense points clouds as inputs and

employs five EdgeConv [4] layers to extract features. The last

EdgeConv layer takes as input the feature concatenated by the

outputs of the preceding EdgeConv layers to aggregate local

features of the point clouds, and the final feature is obtained

by a max-pooling layer followed by a fully-connected layer.

After obtaining the features from the global branch and

the local branch, we concatenate and feed them into fully-

connected layers to predict a discretized rotation class. Once

the rotation of an input object relative to the unified view is

obtained, an inverse rotation is applied to the input object to

obtain its corresponding view-invariant point cloud.

Self-Supervised Rotation Training. Here, a self-

supervised scheme for generating labeled training samples is

introduced. Assuming that some samples with a fixed view

are given, for each sample, we firstly generate a random Z-Y-

Z Euler-angle-based rotation. Its rotation label y is obtained

according to the discretized {α, β, γ} rotation angles, where

y ∈ {1, 2, · · · , N} and N is the number of all classes of dis-

cretized rotations. Then we apply the generated 3D rotation

to the sample under a world coordinate system for generating

a new sample. Accordingly, we could obtain a large amount

of labeled samples with different views and utilize them to

train the RTN via multi-class cross-entropy loss.

4. EXPERIMENTS

In this section, we firstly introduce the experimental setup.

Secondly, we evaluate the rotation estimation performance of

the proposed RTN. Then we give the comparative experimen-

tal results on the classification and segmentation tasks. Lastly,

Table 2. The mean inCD and outCD values of RTN on Mod-

elNet40 and ShapenetPart.

Dataset ModelNet40 ShapenetPart

Mean inCD 0.19 0.21

Mean outCD 0.09 0.08

we end up with ablation analysis. Additionly, we also provide

experiments on the effect of different rotation representations

in the supplementary material. The code will be available at

https://github.com/ds0529/RTN.

4.1. Experimental Setup

We evaluate the proposed method on the ModelNet40 shape

classification benchmark [16] and the ShapenetPart part seg-

mentation benchmark [17]. The poses of shapes in Mod-

elNet40 is not totally aligned, so we manually rotated the

shapes belonging to an same category to locate at an same

pose for precise alignment. The pose of all the shapes in

ShapenetPart is aligned precisely. The discretization interval

of R(α, β, γ) is set to π/6, so that N is 744. The details of

datasets and network parameters are described in the supple-

mentary material.

4.2. Performance of RTN on Rotation Estimation

We evaluate the rotation estimation performance of the pro-

posed RTN on ModelNet40 and ShapenetPart through Cham-

fer Distance (CD) [18] and rotation classification accuracy.

CD can directly evaluate the quality of rotation estimation but

the other can not due to symmetric 3D objects. The details of

rotation classification results are discribed in the supplemen-

tary material.

CD calculates the average closest point distance between

two point clouds. For each 3D object, we calculate two CD

values, one of which is between input rotated point cloud and

the point cloud with 0 RDF (inCD), and the other is between

output point cloud by proposed RTN and the point cloud with

0 RDF (outCD). Then we average the calculated CD values

of all 3D objects. We perform the experiments five times in-

dependently and use the mean results as the final results.

The mean CD values are listed in Table 2. As seen from

Table 2, the mean outCD values on both datasets are pretty

lower than the mean inCD values, which indicates that the

proposed RTN has ability to transform the input 3-RDF point

clouds to 0-RDF point clouds in most cases. Furthermore, we

visualize the input rotated point clouds in ModelNet40 and

the corrected counterpart via two spatial manipulation module

(RTN and T-Net [4]) in Figure 1. The visualization shows that

T-Net could not reduce the RDF of objects, but the proposed

RTN could effectively reduce 3 RDF from them.

4

Table 3. Comparison on ModelNet40 with Data SO(3) for

3D point cloud classification.

Method Input(size) Ins/mCls

PointNet(with T-Net) [1] ♦ pc(1024×3) 84.4/79.9

PointNet++ [2] ♦ pc(1024×3) 85.7/80.6

DGCNN(with T-Net) [4] ♦ pc(1024×3) 88.7/84.4

SpiderCNN [3] ♦ pc(1024×3) 84.0/78.7

Zhang et al.[9] ♥ pc(1024×3) 86.4/-

Poulenard et al.[7] ♥ pc(1024×3) 87.6/-

Li et al.[8] ♥ pc+normal(1024×6) 88.8/-

ClusterNet [13] ♥ pc(1024×3) 87.1/-

SRINet [12] ♥ pc+normal(1024×6) 87.0/-

REQNNs [14] ♥ pc(1024×3) 83.0/-

Ours(RTN+PointNet) pc(1024×3) 86.0/81.0

Ours(RTN+PointNet++) pc(1024×3) 87.4/82.7

Ours(RTN+DGCNN) pc(1024×3) 90.2/86.5
Ours(RTN+SpiderCNN) pc(1024×3) 86.6/82.4

4.3. 3D Point Cloud Classification

Here, we combine the proposed RTN with four state-of-

the-art methods including PointNet [1], PointNet++ [2],

DGCNN [4], and SpiderCNN [3] respectively, denoted

as RTN+PointNet, RTN+PointNet++, RTN+DGCNN, and

RTN+SpiderCNN, and evaluate their performances on 3D

point cloud classification task. The models are trained and

tested with Data SO(3) on ModelNet40 for comparing the

performance on 3D rotation invariance, and two criteria are

used to evaluate the performance: instance accuracy (denoted

as Ins (%)) and average per-class accuracy (denoted as mCls

(%)). We perform the experiments five times independently

and use the mean results as the final results. We compare

the results of the proposed methods with nine recent state-of-

the-art methods as summarized in Table 3. In Table 3, the

results of the four methods marked by ♦ are obtained by re-

implementing these methods by the authors, because these

methods are not evaluated on Data SO(3) in the original pa-

pers, while the results of the five methods marked by ♥ are

cited from the original papers directly. As noted from Table

3, we find that the proposed RTN is able to help the existing

DNNs to improve their performances on dealing with 3D rota-

tion variance by transforming the input view-dependent point

clouds to view-invariant point clouds. The comparative re-

sults also show us that the RTN-based DNNs are superior to

the T-Net-based DNNs, which informs us that the proposed

RTN is better at reducing RDF than T-Net. The DGCNN

equipped with the proposed RTN outperforms the current

state-of-the-art methods with significant improvement.

4.4. 3D Point Cloud Segmentation

Although the results in the classification task have demon-

strated the effectiveness of the proposed RTN, we further

Table 4. Comparison on ShapenetPart with Data SO(3) for

3D point cloud segmentation.

Method Input(size) mIoU/Acc

PointNet(with T-Net) [1] ♦ pc(2048×3) 79.1/90.6

PointNet++ [2] ♦ pc(2048×3) 75.4/88.4

DGCNN(with T-Net) [4] ♦ pc(2048×3) 78.9/90.8

SpiderCNN [3] ♦ pc(2048×3) 74.5/87.9

Zhang et al.[9] ♥ pc(2048×3) 75.5/-

SRINet [12] ♥ pc+normal(2048×6) 77.0/89.2

Ours(RTN+PointNet) pc(2048×3) 80.1/91.2

Ours(RTN+PointNet++) pc(2048×3) 80.0/91.0

Ours(RTN+DGCNN) pc(2048×3) 82.8/92.6
Ours(RTN+SpiderCNN) pc(2048×3) 80.1/90.7

Table 5. Results of RTNs using different backbones on Mod-

elNet40 with Data SO(3). GA means global architecture. LA

means local architecture. GLA means global-local architec-

ture.

Backbone GA LA GLA

Ins 89.7 89.6 90.2
mCls 85.1 85.8 86.5

evaluate the proposed RTN by conducting experiments in 3D

point cloud segmentation task. We perform segmentation on

ShapenetPart, and average per-shape IoU (denoted as mIoU

(%)) and point-level classification accuracy (denoted as Acc

(%)) are used to evaluate the performances. We also perform

the experiments five times independently and use the mean

results as the final results, where the models are trained and

tested with Data SO(3). The results are compared with six

recent state-of-the-art methods as listed in Table 4. A more

detailed comparison among the RTN based DNNs and the

comparative methods is described in the supplementary mate-

rial. As seen in Table 4, the methods equipped with RTN lead

to a significant improvement compared to the corresponding

original methods without RTN respectively. The DGCNN

equipped with the proposed RTN outperforms all the current

methods.

4.5. Ablation Analysis

Effect of backbone. To prove the superiority of the pro-

posed global-local architecture(GLA), we perform the classi-

fication task on ModelNet40 with RTNs with the global archi-

tecture(GA), the local architecture(LA) and the global-local

architecture. DGCNN is used as the classification network af-

ter RTN. The results under different backbone configurations

are summarized in Table 5. It shows that the proposed global-

local architecture achieves the best performance among all

the backbone configurations, which demonstrates the benefit

5

Table 6. Results of RTNs with different quantization intervals

on ModelNet40 with Data SO(3).

Quantization Interval π/9 π/6 π/4 π/3
Ins 89.7 90.2 89.8 89.5

mCls 86.0 86.5 85.9 85.2

of the global-local architecture.

Effect of Discretization Interval. The interval affects

the rotation classification performance of RTN, and thus af-

fects the performance of existing DNNs equipped with RTN

for point cloud analysis. Here we conduct experiments to ana-

lyze the effect of the discretization interval by setting a group

of intervals {π/9, π/6, π/4, π/3} in the classification task on

ModelNet40. The results are listed in Table 6. As seen from

Table 6, the classification accuracies under the above internals

are quite close, demonstrating that the proposed method is not

sensitive to the angle interval. The interval π/6 achieves the

best performanceand, so we use this interval in both classifi-

cation and segmentation experiments.

5. CONCLUSION

In this paper, we firstly find that the smaller the RDF of ob-

jects is, the more easily these objects are handled by these

DNNs. Then, we find that T-Net module has limited effect

on reducing the RDF of input 3D objects. Motivated by the

above two issues, we propose a rotation transformation net-

work, called RTN, which has the ability to explicitly trans-

form input view-dependent point clouds to view-invariant

point clouds by learning the rotation transformation based on

an Euler-angle-based rotation discretization manner. Exten-

sive experimental results indicate that the proposed RTN is

able to help existing DNNs significantly improve their perfor-

mances on point cloud classification and segmentation.

6. REFERENCES

[1] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J

Guibas, “Pointnet: Deep learning on point sets for 3d

classification and segmentation,” in CVPR, 2017, pp.

652–660.

[2] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas, “Pointnet++: Deep hierarchical feature learning

on point sets in a metric space,” in NeurIPS, 2017, pp.

5099–5108.

[3] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and

Yu Qiao, “Spidercnn: Deep learning on point sets with

parameterized convolutional filters,” in ECCV, 2018, pp.

87–102.

[4] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon, “Dy-

namic graph cnn for learning on point clouds,” TOG,

vol. 38, no. 5, pp. 1–12, 2019.

[5] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen, “Pointcnn: Convolution on x-

transformed points,” in NeurIPS, 2018, pp. 820–830.

[6] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu

Wang, and Ulrich Neumann, “Grid-gcn for fast and scal-

able point cloud learning,” in CVPR, 2020, pp. 5661–

5670.

[7] Adrien Poulenard, Marie-Julie Rakotosaona, Yann

Ponty, and Maks Ovsjanikov, “Effective rotation-

invariant point cnn with spherical harmonics kernels,”

in 3DV, 2019, pp. 47–56.

[8] Jiaxin Li, Yingcai Bi, and Gim Hee Lee, “Discrete ro-

tation equivariance for point cloud recognition,” arXiv:
1904.00319, 2019.

[9] Zhiyuan Zhang, Binh-Son Hua, David W Rosen, and

Sai-Kit Yeung, “Rotation invariant convolutions for 3d

point clouds deep learning,” in 3DV, 2019, pp. 204–213.

[10] Yongming Rao, Jiwen Lu, and Jie Zhou, “Spherical

fractal convolutional neural networks for point cloud

recognition,” in CVPR, 2019, pp. 452–460.

[11] Yang You, Yujing Lou, Qi Liu, Yu-Wing Tai, Lizhuang

Ma, Cewu Lu, and Weiming Wang, “Pointwise rotation-

invariant network with adaptive sampling and 3d spher-

ical voxel convolution,” in AAAI, 2020, pp. 12717–

12724.

[12] Xiao Sun, Zhouhui Lian, and Jianguo Xiao, “Srinet:

Learning strictly rotation-invariant representations for

point cloud classification and segmentation,” in MM,

2019, pp. 980–988.

[13] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen,

Meng Wang, and Liang Lin, “Clusternet: Deep hierar-

chical cluster network with rigorously rotation-invariant

representation for point cloud analysis,” in CVPR, 2019,

pp. 4994–5002.

[14] Binbin Zhang, Wen Shen, Shikun Huang, Zhihua Wei,

and Quanshi Zhang, “3d-rotation-equivariant quater-

nion neural networks,” arXiv: 1911.09040, 2019.

[15] Max Jaderberg, Karen Simonyan, Andrew Zisserman,

et al., “Spatial transformer networks,” in NeurIPS, 2015,

pp. 2017–2025.

[16] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,

Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao,

“3d shapenets: A deep representation for volumetric

shapes,” in CVPR, 2015, pp. 1912–1920.

[17] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al., “Shapenet:

An information-rich 3d model repository,” arXiv:
1512.03012, 2015.

[18] Haoqiang Fan, Hao Su, and Leonidas J Guibas, “A point

set generation network for 3d object reconstruction from

a single image,” in CVPR, 2017, pp. 2463–2471.

6

